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ABSTRACT 
 

A detailed investigation of the three-dimensional flow in a cascade of second-

generation controlled-diffusion compressor stator blades, at off-design inlet-flow angle, is 

reported.  Three-component fiber-optic Laser-Doppler Velocimetry (LDV) surveys were 

made to fully map the flow at one plane upstream of the cascade and at three planes 

downstream.  The measurements were performed at an inlet flow Mach number of 0.22 

and a Reynolds number, based on chord length, of 640,000.  The inlet surveys 

documented the approaching flow field in detail to establish the inlet boundary conditions 

for numerical simulations. At the downstream planes, total velocity distributions, total 

turbulence kinetic energy distributions, secondary flow velocity vector and contour plots 

are presented. The downstream surveys confirmed the existence of secondary flow 

vortices produced by the end wall. Surface vector and contour plots of non-dimensional 

velocity and total turbulence kinetic energy detail the complex flow field, including the 

size and location of the corner vortex system.   
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I. INTRODUCTION 
 
 
 

A. BACKGROUND  

The analysis of airflow over a blade row in a linear cascade is used to aid in the 

design of axial flow compressors.  The linear cascade can be used to model the flow over 

compressor blades in a 2-D sense, by neglecting the radial component of the flow vector. 

    The need for smaller and more powerful engines to meet the demands of 

today’s aircraft has led to increased requirements for blade loading, improved 

performance at the design point and the ability to operate at off-design conditions without 

compressor stall.  This has led to the development of controlled-diffusion (CD) blading. 

    Controlled-diffusion blading allows blades to be specifically designed to 

produce the desired pressure distribution, while avoiding boundary-layer separation on 

the suction side of the blade.  This allows higher blade loading, thus providing more 

turning for each blade row and therefore fewer blades to obtain the desired pressure ratio 

within a compressor, or a higher-pressure ratio with the same number of blades.  Thus 

compressor size and weight can be reduced for a given engine thrust. 

    Controlled-diffusion blading was made possible by the development of 

Computational Fluid Dynamics (CFD) techniques.  Since CFD is an integral part of the 

blade design process, validation data must be gathered in order to continue the 

development for more efficient, higher performance blading.  

The CD compressor blades investigated in the current study were designed by 

Thomas F. Gelder of NASA Lewis Research Center [Ref. 1].  The compressor stator 

profiles were Stator 67B blades, which together with Rotor 67, comprised Compressor 

Stage 67B.  The Stator 67B blades were second-generation CD blades, which were 

designed as an improvement over Stator 67A, a first-generation CD blade designed by 

Nelson Sanger [Ref. 2].   

The present study was an investigation of flow through Compressor Stage 67B 

CD compressor blades in the Naval Postgraduate School (NPS) low-speed cascade wind 
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tunnel (LSCWT).  Hanson [Ref. 3] examined the flow through the mid-span section at a 

near-design inlet flow angle of 36.3 , using Laser-Doppler Velocimetry (LDV) and 

pressure probe measurements.  Schnorenberg [Ref. 4] studied the off-design flow 

characteristics at an angle of 38 .  LDV measurements, flow visualization, and blade 

surface pressure measurements were used to investigate the effect of Reynolds number on 

a separation region detected near mid-chord.  Grove [Ref. 5] characterized the flow 

patterns at an inlet flow angle of 39.5 .  Flow visualization, rake probe surveys, blade 

surface pressure measurements and LDV measurements were used to document the flow 

upstream, in the passages between the blades, in the boundary layer of the blades, and in 

the wake region.  Nicholls [Ref. 6] characterized and compared the flow patterns over 

and around the blades after the replacement of the wind tunnel motor.  The inlet flow 

angle was found to have increased from 39.5  to 40  with no movement of the blades in 

the tunnel.  Carlson [Ref. 7] characterized the three-dimensional flow behavior in the 

end-wall region of the cascade.  Five-hole pressure probe and two-component LDV 

measurements were used to characterize the flow upstream of the blades and in the wake 

region.  CFD studies were also initiated to compare blade surface pressure distributions at 

various inlet flow angles and inlet boundary layer thickness. 

 

B. PURPOSE 

The objective of the current study was the characterization of the three-

dimensional flow behavior upstream and downstream of the CD blades in the linear 

cascade.  Three-component LDV measurements were used to characterize the flow 

upstream of the blades and in the wake region of the blades at a Reynolds number of 

640,000.  The purpose of performing these measurements was to determine the extent of 

the corner vortex system that resulted in mid-span flow separation on the blades as 

conducted by Schnorenberg [Ref. 4] and Nicholls [Ref. 6].  Inlet surveys were conducted 

to document the approaching flow field so that the correct inlet boundary conditions 

could be determined for comparison with CFD predictions.  These LDV measurements 

complimented the five-hole probe wake measurements performed by Carlson [Ref. 7].  
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II. TEST FACILITY AND INSTRUMENTATION 
 

A. LOW-SPEED CASCADE WIND TUNNEL 

The present study was conducted in the Low-Speed Cascade Wind Tunnel 

(LSCWT) located at the Naval Postgraduate School’s Turbopropulsion Laboratory. The 

wind tunnel is powered by a 550-hp electric motor driving a turbo-vane blower, and is 

capable of producing a sustained maximum free stream Mach number of 0.4 in the test 

section.  Figure 1 shows a schematic of the cascade in the Low Speed Turbomachinery 

Building (Bldg. 213) with the associated plenum chamber, drive system, and inlet and 

exhaust ducting.  All aspects of the tunnel remain as previously documented by Nicholls 

[Ref. 6]. 

 
Figure 1. NPS Cascade Wind Tunnel Facility [From Ref. 7] 

 

B. TEST SECTION 

The test section of the LSCWT contained 10 Stator 67B controlled-diffusion 

blades.  The installation of the blades in the test section was detailed by Hansen [Ref. 3].  

A detailed layout of the test section is shown in Figure 2.   
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Figure 2. Test Section Schematic [From Ref. 7] 
 

The blades were scaled from the mid-span section of the Stator 67B [Ref. 1].  The 

coordinates used to machine the blades were documented in Hanson [Ref. 3].  Each blade 

was 254 mm in span, 127.25 mm in chord and set with blade spacing of 152.4 mm. 

The blade profile is shown in Figure 3. 
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Figure 3. Blade Profile [From Ref. 7] 
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LDV measurements were conducted between blades 3 and 4.  These blades were 

anodized black to minimize laser light backscatter.  A photograph of the 10 CD blades 

mounted in the test section of the LSCWT with the north wall of the tunnel removed is 

shown below in Figure 4. 

 

Figure 4. CD Blades Mounted in LSCWT 
 

 

C.      LDV INSTRUMENTATION AND DATA ACQUISITON 

The LDV system utilized for this work was a TSI three-component fiber-optic 

system.  There were four major subsystems to this system:  laser and optics, data 

acquisition system, traverse table and seeding mechanism.  Figure 5 shows the 5-Watt 

Argon-ion laser and TSI Color Separator. 
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Figure 5. Argon-Ion Laser and Color Separator 
 

Figure 6 shows the optical probes mounted on the traverse mechanism and the 

data acquisition system (PC) with the TSI IFA 750 data processor.  

 
Figure 6. Optical Probes, Traverse and Data Acquisition System 
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  Figure 7 is a schematic of the laser and optics of the TSI LDV system. 
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Figure 7. Laser and Optics Schematic 

 
1. Laser and Optics 

The 5-Watt Lexel laser was operated in the multi-line mode and was aligned to 

fire into a beam collimator then directly into a multicolor beam separator.  The multicolor 

beam separator, a TSI model 9201 Colorburst, takes the beam from the laser source and 
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splits it into two separate beams.  One beam is passed through a Bragg cell to allow 

frequency shifting on that beam.  Both beams are then passed through a prism for color 

separation.  The Colorburst produces three pairs of beams:  green (514.0 nm), blue (488.0 

nm) and violet (476.5 nm).  The six beams are then reflected vertically into six fiber-optic 

couplers.  A coupler aligns the laser beam onto the center of a transmitting fiber-optic 

line and focuses the beam waist at the end of the fiber.  There are six transmitting fiber-

optic lines in the system.  Four are for the two-component and two are for the one-

component probe.  The probes separate the beams by 50 mm and the final lens focuses 

the beams of similar colors onto a point at a focal distance of 349.8 mm.  The 

polarization of the six individual laser beams is completed within the probes and they are 

polarized in the same direction.   

2. Data Acquisition 

Scattered light from the seed particles is collected by each 83 mm probe and fed 

back to a TSI Model 9230 Colorlink via a return fiber-optic line.  The feedback signal 

from the one-component probe is sent through a violet filter then to a photomultiplier 

tube within the Colorlink.  The feedback signal from the two-component probe has the 

green beam separated from it, with a refracting mirror, and that green light goes through a 

green filter to a photomultiplier tube.  The reflected beam is directed through a blue filter 

to a third photomultipler tube.  The Colorlink contains all the components necessary to 

collect the scattered light and complete the downmixing.  The downmixed signals from 

the Colorlink are sent to the IFA 750 signal processor.  The signals are then fed from the 

IFA 750 to an IBM PC via a multi-channel interface.  TSI’s PACE 1.4 software is used to 

process the Doppler signals. 

3. Traverse Table 

The two fiber-optic probes were mounted on an “I” beam attached to a traverse 

table that was capable of moving 600 mm in all directions.  The PACE 1.4 software, via 

an RS-232 connection, controlled the traverse table power supply, with digital readout. 

The table could also be controlled manually.   
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4. Seeding 

The most critical component of the LDV system is particle seeding.  The selection 

of seeding material and location where the seeding particles are injected into the flow 

must be carefully considered.  The seeding particles must be the correct size, usually 

about 1 mµ  in order to follow the flow properly, and must be able to scatter the light from 

the incident laser beam.  Seeding location determines the area downstream in the test 

section that will contain enough seed particles to produce a sufficient data rate for data 

acquisition.  The seeding source, which is usually a wand, must be located far enough 

upstream so that any flow field interference caused by the wand has time to mix out 

before the flow enters the test section. 

 Olive oil was used as the seeding material for the present LDV measurements.  

The seed particle generator used was a TSI Model 9306 Six-Jet Atomizer modified with a 

four-wand configuration as shown in Figure 8.   

 

Figure 8. Six-Jet Atomizer and Seeding Wands 
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The average particle size from the particle generator was 0.9 mµ  with a standard 

deviation of 0.45 mµ .  Seeding material was injected into the flow upstream of the inlet 

guide vanes.  Four seeding wands were used to cover the spanwise depth of the survey 

from blade 3 to blade 4.  The wands could be rotated 360 degrees, which moved the 

location where the seeding was focused.  The wands could also be adjusted in depth from 

centerline to the north wall. The four adjustable wands provided excellent seeding 

coverage for the entire survey area.  Seeding wand access ports are shown in Figure 9. 

 

Figure 9. Seeding Wands and Access Ports 
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III. EXPERIMENTAL PROCEDURES 
 

A.          LDV SETUP AND SYSTEM VALIDATION 

The LDV components were setup in accordance with the TSI instruction 

manuals [Ref. 11].  All components, as shown in Figure 6, were capable of being 

controlled by the user at the computer keyboard.  The probe orientation and 

coordinate system used is the same as Dober [Ref. 9].  Figure 10 shows the probe 

orientation and coordinate system used for the experiment. 

 
Figure 10. Probe Orientation and Traverse Coordinate System 

 

 With the probes properly mounted on the “I” beam and oriented 30 degrees from 

the perpendicular to the test section window, the beam crossing had to be checked.  A 

minimum of 80% overlap in probe volumes was required for data acquisition in the 

coincidence mode.  To check the beam crossing the microscopic objective was used. First 

all adjustments to the two-component (green & blue) probe were made and the one-

component (violet) probe was turned off.  The beams from the two-component probe 
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were projected into the microscopic objective and the traverse table was moved until the 

beam crossing point of all four beams was found.  The two-component probe was turned 

off and the one-component probe was then turned on.  The two violet beams were 

adjusted using the one-component probe mount to adjust the focal point of the violet 

beams, and also to adjust the beam crossing point so that it overlapped the beam crossing 

point of the blue beams.  During this procedure, it was determined that the microscope 

objective was too deep (tube-like) to accept all six beams crossing through to the focal 

point.  A 0.0762 mm  (0.003 in) brass shim-stock, with a 0.3302 mm (0.013 in) hole, was 

then utilized for probe volume alignment as described above.  The shim-stock provided 

good results for the beam crossing and probe volume alignment.  It was then determined 

that the required 80% overlap was not obtainable with the probe mount adjustment 

devices on the one-component probe.    

The microscope objective was used to determine whether the violet beams were 

properly aligned with 100% overlap of the violet shifted and unshifted beams.  It was 

determined that there was only 30% to 40% overlap of the one-component violet beams.  

Beam alignment via internal setscrews in the rear of the one-component probe was 

required to obtain 100% overlap of the violet probe volumes.  Once the violet probe 

volumes were properly aligned the two-component beam was turned on and all six beams 

were passed through the shim-stock.  At least 80% overlap in probe volumes was 

obtained, resulting in proper alignment of the system for data acquisition in the 

coincidence mode. 

A coordinate system for the data acquisition was established by hanging an 

alignment tool on blades three and four.   It was the same alignment tool that Hansen 

[Ref. 3] had built.  Figure 11 shows the alignment tool mounted in the test section on 

blades 3 and 4.  The second central hole from the top was modified to allow alignment of 

the probe volume from probes that are mounted 30 degrees from the perpendicular to the 

test section window. 

 

 12 



 
Figure 11. Alignment Tool Mounted in Test Section 

 

The manual traverse control was used to align the probe volume and pass all six  

beams through the 1.0922 mm (0.043 in) diameter hole.  Relative home was then set on 

the traverse, and the traverse was then moved to the position X'=-87.653 mm, Y'=-52.798 

mm and Z'=-93.750 mm.  This positioned the probe volume at the tip of the leading edge 

on the north wall window of blade 3.  Relative home was again set on the traverse and 

this position became the origin of the coordinate system for the surveys conducted in this 

experiment.  Figure 12 shows the blade profile coordinate system, with the origin located 

at the leading edge and the Y'=0 coordinate being the position where the leading edge of 

the blade touched the north wall window.  Thirteen survey stations were established, 

which are also shown in Figure 12.  
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Figure 12. Blade Profile Coordinate System 

 

The stations are represented as a fraction of axial chord (Cac) in Figure 13.  The stations 

defined as a fraction of axial chord were used in the presentation of the experimental 

results.   
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Figure 13. Blade Stations Defined as Percent Axial Chord (Cac) 

 

System validation was completed by a comparison between the three component 

fiber-optic LDV system and a two component fiber-optic LDV system as described by 

Carlson [Ref.  7].  The two component system was used by Carlson to collect data at the 

same point in the flow field.  Reasonable agreement was obtained.  The present results 

were within five percent of the measurements that were conducted by Carlson. 

 

B.        LDV SURVEYS 

Three component LDV surveys were conducted both upstream and downstream 

of the controlled-diffusion blades. The surveys were a combination of inlet and wake 

surveys at a tunnel setting corresponding to a Reynolds number of 640,000, with the test-

section total pressure held constant at 304.8 mm (12 in.) of water gauge.  A single 

upstream survey was conducted at Station 1, and three downstream surveys were 

conducted at Stations 11, 12, and 13 respectively.  Figure 14 shows each of the survey 

points on the various grids used to measure the flow field in this experiment.   
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Figure 14. LDV Survey Grids 

 

Each grid extended from the leading edge of blade 3 to the leading edge of blade 

4.  As established by Carlson [Ref. 7], a survey point along the X'-Axis is referred to as a 

survey position, a survey point along the Y'-Axis is referred to as a survey location, a 

survey point along the Z'-Axis is referred to as a survey station.  Location 1 refers to 

Y'=127 mm (blade centerline).  The flow field at each station was measured at 6.35 mm 

(1/4 inch) positions starting from blade centerline location and traversing outward 

towards the north end-wall region, over one complete blade passage. 
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Data collected by the LDV system included axial, tangential and spanwise flow 

velocities, turbulence intensities, and Reynolds stresses.  The flow angles ( γβα ,, ) were 

defined using the magnitude of the mean velocities ( ) in the x, y, and z directions 

respectively to define a 3-D velocity vector. Figure 15 shows the flow angles defined for 

the 3-D flow field measurements in the present experiment. 

wvu ,,

Figure 15. Flow Angles Relative to Traverse Coordinate System 
 

The data collection software package PACE 1.4 was used for the present study.  

PACE 1.4 is a TSI Windows-based software package specifically designed for LDV 

systems.  All surveys were conducted with the laser power output set to 1.5 Watts, 

coincidence mode selected and 1000 data points were used for each histogram.  The only 

variations in data collection from the inlet survey to the wake surveys were the processor 

control settings for frequency range, and frequency shifting. 

One inlet flow survey was conducted at station 1.  Colorlink frequency shifting of 

1 MHz was set for all three channels.   

Wake surveys were conducted at stations 11, 12 and 13.  Colorlink frequency 

shifting for channel 1 was set to 5 MHz, and channels 2 and 3 were set to 10 MHz w/23 

MHz low pass filter. 
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In order to obtain optimal results for each survey the following procedure was 

followed:  Prior to a station survey all six beams were optimized for power setting and 

alignment.  This procedure is outlined in the TSI instruction manual [Ref. 11].  The test 

section window was cleaned.  The window was properly installed paying close attention 

to the setscrews.  Over tightening or misaligned setscrews could result in window 

warping and poor data collection.  The seeding atomizer provided sufficient seeding 

when set to 40psi.  As the survey began at the leading edge of blade 3 and traversed in 

position along the X'-axis, seeding wands 3 and 4 were clamped off until the survey was 

half way between blades 3 and 4, then wands 3 and 4 were opened and wands 1 and 2 

were clamped off.  As the surveys began at the centerline location along the Y'-axis, with 

subsequent ones closer to the north wall, the seeding wands had to be pulled toward the 

north wall.  This resulted in excess seeding oil collecting on the inside of the test section 

window, which resulted in poor data collection.  The window was cleaned frequently 

during the survey, using a broomstick with a clean rag attached to the end to wipe the 

inside of the window from the top (exhaust section) of the wind tunnel. 

 

C. LDV DATA PROCESSING 

Ambient pressure, plenum total pressure and plenum total temperature were 

recorded for each survey.  The velocity at the inlet of the test section was measured for 

each survey and used as the reference velocity, Vref, for purposes of non-

dimensionalizing the data.  A FORTRAN code, CALIB1 [Ref. 3], was used to calculate 

Vref for each survey using atmospheric pressure, plenum total pressure and plenum total 

temperature.  A summary of Vref input and output data files for each survey is listed in 

Appendix A.  All data were processed using TSI PACE 1.4 software, and each survey 

was non-dimensionalized using Vref for that survey.  This allowed surveys conducted 

under different atmospheric conditions to be compared. 

The PACE 1.4 software required a transformation matrix to be applied to the data 

for the two-probe arrangement.  The two components of velocity measured in a plane 

were resolved to get  and  values.  The optical axes of the blue and violet beams xu yu
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were used to measure the two components of velocity in the same plane as shown in 

Figure 16.  

 
Figure 16. Two-Probe Arrangement: Green and Violet Beams in Ux-Uy Plane 

The green pair of beams measured the component of velocity Uz out of the plane of the 

paper and the blue and violet pair of beams measured the two non-orthogonal 

components ub and uv of velocity.  From these, the values of u  and  were obtained 

using Equation (1),  
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From the values obtained in Equation (1) the coordinate transformation matrix used in 

this experiment for all data processed with PACE 1.4 software was 
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The processed data from PACE 1.4 was formatted in Excel spreadsheets.  The 

spreadsheets were reduced and organized by station and location.  For each flow field 

coordinate non-dimensional velocity, turbulence intensities, Reynolds stress, correlation 

coefficients, total velocity and flow angles were determined.  Appendix B contains the 

tabulated data for stations 1, 11, 12 and 13 respectively. 

 

 20 



IV. RESULTS AND DISCUSSION 
 

A.  INLET SURVEY 

Three-dimensional LDV measurements upstream of the test section were 

performed at Station 1 to characterize test section inlet flow conditions.  Station 1 was 

located upstream of the test section at 30% axial chord (0.30cac).  Results at Station 1 for 

the velocity (referenced to inlet reference velocity, Vref), turbulence intensities, Reynolds 

stress and correlation coefficients are tabulated in Appendix B.  The results show nearly 

uniform velocity ratios U/Vref, V/Vref, W/Vref.  The turbulence intensities ranged from 

1.5%-3.0% near the centerline of the blades and increased as the survey approached the 

end-wall region, ranging from 2.9%-5.6%.  The Reynolds stress correlation coefficients 

remained below 0.1 for all locations, showing the flow to be random or uncorrelated.  

Station 1 velocity profiles (Utot/Vref,) for each location from centerline to end wall 

are plotted in Appendix C.  Along the centerline (location 1), three distinct dips in 

velocity occur at y/S positions of 0.2, 0.4 and 0.6 causing wave-like features in the flow.  

The wave-like features of the velocity ratios correspond to the spacing of the inlet guide 

vanes.  In comparison, the results of the 2-D LDV surveys conducted by Carlson [Ref. 7], 

do not show the three distinct dips along the centerline but do show them at all the other 

locations at Station 1.  It is concluded that seeding mechanism was the probable cause for 

Carlson's centerline survey not showing the three distinct dips.  He used a single rotatable 

seeding wand to perform his centerline survey while, in the present study, an array of 

seeding wands was used. 

 A surface plot of the non-dimensionalized velocity (Utot/Vref) from centerline 

(z/h=0) to the end-wall region was generated and is shown in Figure 17 as a summary of 

all Station 1 surveys.  The plot was generated using the MATLAB code presented in 

Appendix D.  As expected, the plot shows a fairly uniform velocity profile; however, the 

wavelike features can be seen corresponding to the spacing of the inlet guide vanes. The 

extent of the boundary layer can also be seen at z/h = -0.42.  This data can be compared 

to the five-hole probe data produced in a graduate laboratory course, AA3802 Term 
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Project [Ref. 8]. The non-dimensional velocity X is presented in Figure 18 and the 

tabulated data from AA3802 Term Project are presented in Appendix E. The five-hole 

probe survey was conducted further upstream than Station 1, (at 1.8 Cac), therefore the 

effects of the inlet guide vanes become more apparent and the boundary layer is more 

clearly defined.  

 
Figure 17. Station 1 Surface Plot of Non-Dimensional Velocity (Utot/Vref) 

 

 22 



 
Figure 18. Non-Dimensional Velocity; Five-Hole Probe Data  

 

A surface plot of non-dimensional turbulence kinetic energy (k/Vref2) from 

centerline (z/h=0) to the end-wall region was generated and is shown in Figure 19 as a 

summary of all Station 1 locations.  The plot was also generated using the MATLAB 

code presented in Appendix D.  As expected the plot shows a fairly uniform turbulence 

profile with the wave-like features corresponding to the spacing of the inlet guide vanes, 

which are more clearly defined.  An average non-dimensionalized total turbulence kinetic 

energy value of (k/Vref2) = 8 is evident in the free stream.  The turbulence kinetic energy 

increases as the end-wall boundary layer is approached to an average value of (k/Vref2) = 

19, and a maximum value of (k/Vref2) = 30 is observed at the end-wall region in the wake 

of each inlet guide vane. 
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Figure 19. Station 1 Non-Dimensional Turbulence Kinetic Energy k/(Vref^2) 

 

The level of turbulence increases at a z/h of approximately -0.3 towards the north wall 

(z/h=-0.5), indicating the extent of the incoming end-wall boundary layer, ( ). h/z2.0≈δ

 
B. WAKE SURVEYS 

Wake surveys were performed at Stations 11, 12, and 13. Station 11, 12 and 13 

were located downstream of the test section at 105% (1.05cac), 110% (1.10cac), 120% 

(1.20cac) axial chord respectively. Results at each station for the velocity (referenced to 

inlet velocity condition, Vref), turbulence intensities, Reynolds stress and correlation 

coefficients, are tabulated in Appendix B.  The velocity profiles (Utot/Vref) at Station 13, 

at each location from the centerline to the end wall, are plotted in Appendix C.  The 

velocity profiles were relatively uniform in the free stream, with depressions in the 

vicinity of the blade trailing edge position.   
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 The turbulence intensities for all three downstream stations ranged from 1.5%-

24% near the centerline of the blades and increased as the survey approached the north 

wall to a range from 3.5%-18%.  

A surface plot of the non-dimensionalized velocity (Utot/Vref) from the centerline 

(z/h=0) to the end-wall region was generated, at each station, for all locations from the 

centerline the to end-wall region.  The plot(s) for each station are presented and discussed 

below. 

1. Station 11 

Station 11 survey results are shown tabulated in Appendix B.  The entire flow 

field survey could not be completed.  As the probe volume traversed closer to the north 

wall the Colorlink experienced over saturation and therefore could not collect data in 

coincidence mode.  For those data points which were incomplete, thus resulting in 

unreasonably high values, the non-dimensionalized velocity values  (Utot/Vref) were set to 

one and all other entries on the table were set to zero.   

In the free stream region, the turbulence intensity remained nearly uniform until 

the wake was reached, at which point it began to increase at the trailing edge of the 

blades, with a maximum value of 24%.  The wake turbulence also showed two distinct 

peaks as the wake was traversed.  A surface plot of non-dimensional turbulence kinetic 

energy (k/Vref2) is not presented because of the number of incomplete data points, as 

discussed above.  The correlation coefficient started at a magnitude of 0.2 and became     

-0.2 as the wake was traversed, and returned to a value of 0.1. 

A surface plot of Station 11 non-dimensionalized velocity (Utot/Vref), from 

centerline (z/h=0) to the end-wall region, was generated, and is shown in Figure 20.  The 

plot is not smooth due to the minimal number of data points collected from the nine 

irregularly spaced spanwise surveys.  The surface plot clearly shows the drop in velocity 

as the wake is approached, and increasing in complexity as the end-wall region is 

approached.   
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 Figure 20. Station 11 Surface Plot of Non-Dimensional Velocity (Utot/Vref) 

 

Figure 21 shows Station 11 non-dimensional pitchwise velocity vectors over 

plotted as a contour plot of the total velocity.  Although some data points were 

incomplete as described above, Figure 21 clearly shows a secondary flow present within 

the wake.  The secondary flow can be seen at y/S=0.45, z/h=-0.325, and also at y/S=0.2, 

z/h=-0.35.  It can also be seen that, close to the end wall, the velocity trough shrinks due 

to the interference with the end-wall corner vortices.  The end-wall boundary layer may 

also be a cause for the shrinking of the velocity trough, combined with the secondary 

flow effects. 
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Station 11

 

 Figure 21. Station 11 Total Velocity Contour and Vector Plot of Pitchwise Velocity  
 
2. Station 12 

Station 12 survey results are shown tabulated in Appendix B.  The entire flow 

field survey could not be completed; as the probe volume traversed closer to the north 

wall test section window, the Colorlink experienced over saturation and therefore could 

not collect data in the coincidence mode. The turbulence intensity remained nearly 

uniform until the wake was reached, at which point it began to increase at the trailing 

edge of the blades, with a maximum value of 24%.  The wake turbulence also showed 

two distinct peaks as the wake was traversed.  The correlation coefficient started at a 

magnitude of 0.2 and became -0.2 as the wake was traversed, and returned to a value of 

0.1. 

A surface plot of Station 12 non-dimensionalized velocity (Utot/Vref), from 

centerline (z/h=0) to the end-wall region, was generated, and is shown in Figure 22.  The 

surface plot clearly shows the drop in velocity as the wake is approached, becoming more 
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complex as the end-wall region is approached.  It also shows a widening in the wake area 

of reduced velocity as compared to Station 11 (Fig. 20), indicating the diffusion of the 

wake. 

 
Figure 22. Station 12 Surface Plot of Non-Dimensional Velocity (Utot/Vref) 
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Figure 23 shows Station 12 non-dimensional pitchwise velocity vectors over 

plotted on a contour plot of the total velocity.  Although some data points were 

incomplete, as described above, Figure 23 shows a secondary flow to be present and 

more clearly defined within the wake.  The secondary flow can be seen at y/S=0.15, 

z/h=0.35 and y/S=0.45, z/h=0.35.  As indicated by the contours, the velocity trough is 

wider at the centerline (free stream) and is shrunk or "squeezed" together by the effects of 

the secondary flow, and possibly end-wall boundary layer effects. 

 
Station 12

 
 Figure 23. Station 12 Total Velocity Contour and Vector Plot of Pitchwise Velocity 

 

A surface plot of non-dimensional turbulence kinetic energy (k/Vref2), from the 

centerline (z/h=0) to the end-wall region, was generated, and is shown in Figure 24 as a 

summary of all Station 12 locations.  An average non-dimensionalized total turbulence 

kinetic energy value of (k/Vref2) = 9 is evident in the free stream.  The turbulence kinetic 

energy increases as the end-wall boundary layer is approached to an average value of 

(k/Vref2) = 35, and a maximum value of (k/Vref2) = 582 is observed in the wake of blade 
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3 along the centerline location.  The non-dimensional turbulence kinetic energy (k/Vref2) 

in the wake also showed two distinct peaks as the wake was traversed. 

 
Figure 24. Station 12 Non-Dimensional Turbulence Kinetic Energy k/(Vref^2) 

 
 
3. Station 13 

Station 13 survey results are shown tabulated in Appendix B.  The entire flow 

field survey was completed, except for location 9 due to Colorlink saturation.  In the free 

stream, the velocity profiles indicated a minimum at the trailing edge of each blade.  The 

turbulence intensity remained nearly uniform until the wake was reached, at which point 

it began to increase at the trailing edge of the blades, with a maximum value of 23%.  The 

wake turbulence also showed two distinct peaks as the wake was traversed.  The 

correlation coefficient started at a magnitude of nearly 0 and became 0.1 as the wake was 

traversed, and returned to a value of zero. 
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A surface plot of Station 13 non-dimensionalized velocity (Utot/Vref), from the 

centerline (z/h=0) to the end-wall region, was generated, and is shown in Figure 25.  The 

surface plot clearly shows the drop in velocity as the wake is approached, becoming more 

complex as the end wall is approached.  It also shows a widening of the area of reduced 

velocity, as compared to Stations 11 and 12 (Figures 21 and 22 respectively), indicating 

the diffusion of the wake. 

   

Figure 25. Station 13 Surface Plot of Non-Dimensional Velocity (Utot/Vref) 
 

Figure 26 shows Station 13 non-dimensional pitchwise velocity vectors over 

plotted on a contour plot of the total velocity.  Figure 26 more clearly defines the 

secondary flow present within the wake.  The secondary flow can be seen at y/S=0.4, 

z/h=-0.4.  Again the velocity trough is wider at the centerline location, and is "squeezed" 

by the secondary flow and the boundary layer as the flow field approaches the north end-

wall region.  The downstream vortices result from the interaction between the end-wall 

boundary layer and the blade tips.  The end-wall boundary layer flow approaching the 
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leading edge of each blade in the cascade separates and rolls up into the familiar 

horseshoe vortex found around all blunt obstacles standing out of a shear flow.  The leg 

of the vortex on the suction side is moved spanwise away from the end wall by the 

secondary flow in the passage.  The leg of the vortex on the pressure side is convected 

across the passage, to join the suction surface of an adjacent blade, so that the end wall 

suction surface corner has two vortices rotating in opposite directions, as seen in Figure 

26.  

 Station 13

 
Figure 26. Station 13 Total Velocity Contour and Vector Plot of Pitchwise Velocity. 

 

A surface plot of non-dimensional turbulence kinetic energy (k/Vref2), from the 

centerline (z/h=0) to the end-wall region, was generated, and is shown in Figure 27 as a 

summary of all Station 13 locations.  An average non-dimensionalized total turbulence 

kinetic energy value of (k/Vref2) = 9 is evident in the free stream.  The turbulence kinetic 

energy increases as the end-wall boundary layer is approached, to an average value of 

(k/Vref2) = 48 and a maximum value of (k/Vref2) = 556 is observed in the wake of blade 
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3 along the centerline location. The non-dimensional turbulence kinetic energy (k/Vref2) 

in the wake also showed two distinct peaks as the wake was traversed. 

 
Figure 27. Station 13 Non-Dimensional Turbulence Kinetic Energy k/(Vref^2) 

 

C. WAKE SURVEYS SUMMARY 

Stations 11, 12 and 13 summary plots were combined, for each station, and are 

presented here as Figures 28, 29 and 30 respectively.  The presentation of these figures 

enables the reader to clearly visualize the resulting downstream flow field.  The gradual 

progression of the secondary flow field can be seen starting at Station 11 (Fig. 28), where 

the velocity trough is very narrow, and the largest difference in velocity from free stream 

to wake is experienced here.  Station 12 (Fig. 29) shows a wider velocity trough, and 

shows a more developed secondary flow field.  Station 13 (Fig. 30) clearly shows the 

secondary flow, and indicates the least difference in velocity from free stream to wake.  
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Figure 28. Station 11 Summary Surface, Vector and Contour Plot of Non-

Dimensional   Velocity (Utot/Vref) 
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Figure 29. Station 12 Summary Surface, Vector and Contour Plot of Non-
Dimensional   Velocity (Utot/Vref) 
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Figure 30. Station 13 Summary Surface, Vector and Contour Plot of Non-
Dimensional   Velocity (Utot/Vref) 
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V. CONCLUSIONS AND RECOMMENDATIONS 
 

A. CONCLUSIONS 

Second-generation controlled-diffusion compressor blade sections, which 

modeled the mid-span section of NASA's Stator 67B, were investigated in the LSCWT.   

The objective of the current study was to characterize the three-dimensional flow 

behavior upstream and downstream of the CD blades in the linear cascade. 

  Three-dimensional LDV measurements were conducted to characterize the flow 

upstream of the blades and in the wake region of the blades.  The purpose of performing 

these measurements was to determine the extent of the corner vortex system, which 

resulted in mid-span flow separation on the blades.  Inlet surveys were conducted to 

document the approaching flow field, so that the correct inlet boundary conditions could 

be determined for comparison with computational fluid dynamics results.   

The inlet survey measured the influence of the inlet guide vanes on the 

approaching flow field, and it was determined that the blade profile had little or no 

influence on the flow at Station 1.  This conclusion was reinforced by analyzing data 

from Carlson [Ref. 7] and the AA3802 Term Project [Ref.11].  Also, the total turbulence 

kinetic energy at Station 1 revealed the influence of the inlet guide vanes on the flow.  It 

was concluded that a good correlation exists between these surveys and the previously 

conducted surveys, with good correlation to the computational fluid dynamics results. 

The downstream wake surveys confirmed the existence of secondary flow 

vortices produced by the interaction of the end wall and blade surface boundary layers. 

The measurements illustrated the complex nature of the flow in the wake through the 

determined total velocity distribution; total turbulence kinetic energy and secondary flow 

vector and contour plots.  It was concluded that the secondary flow vortices were 

approximately the same in magnitude for the end wall flow conditions and the reference 

Reynolds number present in this experiment.  It was also concluded that they were 

counter rotating and their size and location were determined by surface vector and 

contour plots of non-dimensional velocity and total turbulence kinetic energy.   
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B. RECOMMENDATIONS 

Further three-dimensional LDV studies should be performed to investigate vortex 

shedding in the wakes of the blades.  Three-dimensional LDV surveys at higher angles of 

incidence should also be conducted to determine and characterize the approaching stall, 

and stall flow fields.  It is also recommended to conduct three-dimensional surveys at 

intermediate stations between the blades to characterize the boundary layers at higher 

angles of incidence.    
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APPENDIX A.  REFERENCE VELOCITY INPUT AND OUTPUT 
DATA FILES 

 

       FORTRAN INPUT FILE FOR 'CALIB1' and 'CALIB.DAT' 
 

     
Patm   Pplnm    Temp    Raw Data File 

              (mmHg)  (inH2O)   (C)  
 

30.1331 12.0000 17.7778  sta1(0)0315.vt 
30.0313 12.0000 18.6111  sta1(1)0315.vt 
30.0109 12.0000 18.7778  sta1(1)0411.vt 
30.0109 12.0000 18.7778  sta1(2)0411.vt 
30.1331 12.0000 18.7778  sta1(2)0412.vt 
30.1331 12.0000 19.0000  sta1(3)0412.vt 
30.1331 12.0000 19.0000  sta1(353)0412. 
30.1331 12.0000 17.7778  sta1(353)0413. 
30.1331 12.0000 17.7778  sta1(403)0413. 
30.0924 12.0000 18.6111  sta1(403)0416. 
30.1331 12.0000 17.7778  sta1(453)0417. 
30.0109 12.0000 18.6111  sta1(453)0419. 

 
30.0109 12.0000 20.0000  sta11(0)0516.v 
30.0109 12.0000 21.9444  sta11(1)0516.v 
30.0109 12.0000 22.2222  sta11(2)0516.v 
30.0109 12.0000 22.5000  sta11(3)0516.v 
30.0109 12.0000 22.5000  sta11(353)0516 
30.0109 12.0000 20.5556  sta11(353)0517 
30.0109 12.0000 21.1111  sta11(403)0517 
30.0109 12.0000 22.2222  sta11(453)0517 

 
30.0109 12.0000 20.1111  sta12(0)0503.v 
30.0109 12.0000 21.0000  sta12(1)0503.v 
30.0109 12.0000 22.2222  sta12(2)0503.v 
30.0109 12.0000 23.3333  sta12(3)0503.v 
30.0109 12.0000 23.8889  sta12(353)0503 
30.0109 12.0000 24.1667  sta12(403)0503 
30.0109 11.9999 25.4444  sta12(453)0503 

 
30.0109 12.0000 20.0000  sta13(0)0425.v 
30.0109 12.0000 20.0000  sta13(1)0425.v 
29.9702 12.0000 17.8889  sta13(1)0426.v 
29.9702 12.0000 18.3333  sta13(2)0426.v 
29.9702 12.0000 18.3333  sta13(3)0426.v 
29.9702 12.0000 18.3333  sta13(353)0426 
29.9702 12.0000 18.3333  sta13(403)0426 
29.9702 12.0000 18.8889  sta13(453)0426 
29.9702 12.0000 19.1667  sta13(478)0426 
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      FORTRAN OUTPUT FILE 'CALIB.OUT' 

 
      EXPERIMENT NUMBER    REFERENCE VELOCITY      NAME 
                         (m/S) 

 
 1                 70.5505            sta1(0)0315. 
 2                 70.7689            sta1(1)0315. 
 3                 70.8127            sta1(1)0411. 
 4                 70.8127            sta1(2)0411. 
 5                 70.6717            sta1(2)0412. 
 6                 70.6986            sta1(3)0412. 
 7                 70.6986            sta1(353)041 
 8                 70.5505            sta1(353)041   
 9                 70.5505            sta1(403)041 
10                 70.6984            sta1(403)041 
11                 70.5505            sta1(453)041 
12                 70.7925            sta1(453)041 

 
29                 70.9608            sta11(0)0516 
30                 71.1958            sta11(1)0516 
31                 71.2293            sta11(2)0516 
32                 71.2627            sta11(3)0516 
33                 71.2627            sta11(353)05 
34                 71.0280            sta11(353)05 
35                 71.0952            sta11(403)05 
36                 71.2293            sta11(453)05 

 
22                 70.9743            sta12(0)0503 
23                 71.0817            sta12(1)0503 
24                 71.2293            sta12(2)0503 
25                 71.3631            sta12(3)0503 
26                 71.4299            sta12(353)05 
27                 71.4633            sta12(403)05 
28                 71.6164            sta12(453)05 

 
13                 70.9608            sta13(0)0425 
14                 70.9608            sta13(1)0425 
15                 70.7520            sta13(1)0426 
16                 70.8060            sta13(2)0426 
17                 70.8060            sta13(3)0426 
18                 70.8060            sta13(353)04 
19                 70.8060            sta13(403)04 
20                 70.8734            sta13(453)04 
21                 70.9071            sta13(478)04 
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APPENDIX B:  LDV REDUCED DATA 
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APPENDIX C: NON-DIMENSIONAL VELOCITY PROFILES 
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APPENDIX D: MATLAB CODE FOR SURFACE, CONTOUR AND 
VECTOR SUMMARY PLOTS 

 

clear 
 
load Sta1_0.dat 
y(:,1)=Sta1_0(:,1); 
z(:,1)=Sta1_0(:,2); 
 
for i=1:25 
   x(i,1)=-.012*.5; 
end 
 
 
load Sta1_1.dat 
y(:,2)=Sta1_1(:,1); 
z(:,2)=Sta1_1(:,2); 
 
for i=1:25 
   x(i,2)=-.212*.5; 
end 
 
 
load Sta1_2.dat 
y(:,3)=Sta1_2(:,1); 
z(:,3)=Sta1_2(:,2); 
 
for i=1:25 
   x(i,3)=-.412*.5; 
end 
 
 
load Sta1_3.dat 
y(:,4)=Sta1_3(:,1); 
z(:,4)=Sta1_3(:,2); 
 
for i=1:25 
   x(i,4)=-.612*.5; 
end 
 
load Sta1_353.dat 
y(:,5)=Sta1_353(:,1); 
z(:,5)=Sta1_353(:,2); 
 
for i=1:25 
   x(i,5)=-.718*.5; 
end 
 
load Sta1_403.dat 
y(:,6)=Sta1_403(:,1); 
z(:,6)=Sta1_403(:,2); 
 
for i=1:25 
   x(i,6)=-.818*.5; 
end 
 
%load Sta1_453.dat 
%y(:,7)=Sta1_453(:,1); 
%z(:,7)=Sta1_453(:,2); 
 
%for i=1:25 
 %  x(i,7)=-.918*.5; 
%end 
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%load Sta1_478.dat 
%y(:,8)=Sta1_478(:,1); 
%z(:,8)=Sta1_478(:,2); 
 
%for i=1:25 
 % x(i,8)=-.968*.5; 
%end 
 
 
%load Sta1_490.dat 
%y(:,9)=Sta1_490(:,1); 
%z(:,9)=Sta1_490(:,2); 
 
%for i=1:25 
 % x(i,9)=-.98*.5; 
%end 
 
load PX1_0.dat 
y(:,1)=PX1_0(:,1); 
px(:,1)=PX1_0(:,2); 
 
for i=1:25 
   x(i,1)=-.012*.5; 
end 
 
load PX1_1.dat 
y(:,2)=PX1_1(:,1); 
px(:,2)=PX1_1(:,2); 
 
for i=1:25 
   x(i,2)=-.212*.5; 
end 
 
 
load PX1_2.dat 
y(:,3)=PX1_2(:,1); 
px(:,3)=PX1_2(:,2); 
 
for i=1:25 
   x(i,3)=-.412*.5; 
end 
 
 
load PX1_3.dat 
y(:,4)=PX1_3(:,1); 
px(:,4)=PX1_3(:,2); 
 
for i=1:25 
   x(i,4)=-.612*.5; 
end 
 
load PX1_353.dat 
y(:,5)=PX1_353(:,1); 
px(:,5)=PX1_353(:,2); 
 
for i=1:25 
   x(i,5)=-.718*.5; 
end 
 
load PX1_403.dat 
y(:,6)=PX1_403(:,1); 
px(:,6)=PX1_403(:,2); 
 
for i=1:25 
   x(i,6)=-.818*.5; 
end 
 
%load PX1_453.dat 
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%y(:,7)=PX1_453(:,1); 
%px(:,7)=PX1_453(:,2); 
 
%for i=1:25 
 %  x(i,7)=-.918*.5; 
%end 
 
%load PX1_478.dat 
%y(:,8)=PX1_478(:,1); 
%px(:,8)=PX1_478(:,2); 
 
%for i=1:25 
 % x(i,8)=-.968*.5; 
%end 
 
 
%load PX1_490.dat 
%y(:,9)=PX1_490(:,1); 
%px(:,9)=PX1_490(:,2); 
 
%for i=1:25 
 % x(i,9)=-.98*.5; 
 %end 
  
load PY1_0.dat 
y(:,1)=PY1_0(:,1); 
py(:,1)=PY1_0(:,2); 
 
for i=1:25 
   x(i,1)=-.012*.5; 
end 
 
load PY1_1.dat 
y(:,2)=PY1_1(:,1); 
py(:,2)=PY1_1(:,2); 
 
for i=1:25 
   x(i,2)=-.212*.5; 
end 
 
 
load PY1_2.dat 
y(:,3)=PY1_2(:,1); 
py(:,3)=PY1_2(:,2); 
 
for i=1:25 
   x(i,3)=-.412*.5; 
end 
 
 
load PY1_3.dat 
y(:,4)=PY1_3(:,1); 
py(:,4)=PY1_3(:,2); 
 
for i=1:25 
   x(i,4)=-.612*.5; 
end 
 
load PY1_353.dat 
y(:,5)=PY1_353(:,1); 
py(:,5)=PY1_353(:,2); 
 
for i=1:25 
   x(i,5)=-.718*.5; 
end 
 
load PY1_403.dat 
y(:,6)=PY1_403(:,1); 

 85 



py(:,6)=PY1_403(:,2); 
 
for i=1:25 
   x(i,6)=-.818*.5; 
end 
 
%load PY1_453.dat 
%y(:,7)=PY1_453(:,1); 
%py(:,7)=PY1_453(:,2); 
 
%for i=1:25 
 %  x(i,7)=-.918*.5; 
%end 
 
%load PY1_478.dat 
%y(:,8)=PY1_478(:,1); 
%py(:,8)=PY1_478(:,2); 
 
%for i=1:25 
 % x(i,8)=-.968*.5; 
%end 
 
 
%load PY1_490.dat 
%y(:,9)=PY1_490(:,1); 
%py(:,9)=PY1_490(:,2); 
 
%for i=1:25 
 % x(i,9)=-.98*.5; 
%end 
 
 
 
 
figure(1) 
surf(x,y,z), hold on 
contour(x,y,z) 
%the x axis on this plot is the y'direction for the traverse 
%the y axis on this plot is the x'direction for the traverse 
quiver(x,y,py,px),hold off 
title('Station 1 Utot/Vref'),ylabel('y/S Positions'),zlabel('Utot/Vref'),xlabel('z/h Locations') 
axis([-.5 0 0 1 0 1]) 
%contour(x,y,z) 
 
 
 
%surf(x,y,z1), hold on 
%contour(x,y,z) 
%quiver(x,y,px,py) 
 
%Output Data for Sta1 
Sta1_0 
Sta1_1 
Sta1_2 
Sta1_3 
Sta1_353 
Sta1_403 
%Sta1_453 
%Sta1_478 
%Sta1_490 
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APPENDIX E: AA3802 FIVE HOLE PROBE DATA 
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